User login

The Future of Wearable Technology

(February/March 2016) posted on Mon Mar 07, 2016

Why screen printers should care about the development of apparel infused with electronic sensors and circuitry.


click an image below to view slideshow

By Eileen Fritsch

As part of this effort, the US Department of Defense awarded FlexTech Alliance $75 million in federal funding over a five-year period to establish and manage a Manufacturing Innovation Institute for Flexible Hybrid Electronics (nextflex.us). The Institute’s activities will benefit a wide array of markets beyond defense, such as automotive, communications, consumer electronics, medical devices, healthcare, transportation, and agriculture. The Institute will distribute R&D funds via competitive project calls driven by industry-generated technology roadmaps. Supporters include more than 162 companies, non-profits, labs, and universities, including Apple, HP, Boeing, General Motors, and Stanford.

Printing Technologies
In an article on Forbes.com, Pratt Institute instructor Rebeccah Pailes-Friedman notes that “successful wearable technology companies will start with the design first, then build the technology around it.” But which printing technologies will they employ?

Because screen printing is already a proven and versatile technology, with a clear track record in printing all types of textiles, it is already being employed in these cutting edge wearable technologies. Manufacturers of screen-printing inks and equipment are actively researching how their existing materials and printing processes might be used in some of the new applications that the designers are dreaming up.



Greenwood, who has visited more than 3200 plants in dozens of industries, says inkjet can’t yet compete with screen printing, especially for designs that require the application of thick coatings such as the deposition of conductive inks for printed circuits. Screen printing can produce everything from moderately thin films (down to a few microns) to enormously thick films with fairly fine detail, giving it tremendous adaptability in many emerging industrial markets.

Inkjet, though it is the focus of intense R&D for all types of textile applications, is not used in the bulk of the printed electronics work being done on an industrial scale today. Among other limitations, if an inkjet process requires numerous passes to create deeper depositions of conductive materials, microvoids between the layers can affect the transmission of data or currents. Flexography, gravure, and offset can produce very fine detail with 1- to 6-micron accuracy at very high speeds, but cannot handle thicker depositions and have substrate limitations as well.


Terms:

Did you enjoy this article? Click here to subscribe to the magazine.