User login

The Migration of Printed Electronics to 3D

(September 2016) posted on Thu Sep 29, 2016

Emerging 3D-print technology allows manufacturers to produce not only physical components, but also the electronics that enable them to function, adding a new wrinkle to additive manufacturing.


click an image below to view slideshow

By Julia Goldstein

The 3D printer is much more than a toy for hobbyists. This technology has enabled the development of creative products with real value and has the potential to revolutionize manufacturing. The basic benefits of additive manufacturing, where 3D parts are deposited layer by layer in a precise pattern, lie in the ability to quickly change the physical design of an object by editing a software file, while avoiding the material waste inherent in subtractive processes like machining and metal electroplating. Longer term, the marriage of electronics and 3D printing might allow us “to create structures you can’t make any other way,” suggests Lawrence Gasman, president of SmarTech Markets Publishing.

The leading commercial applications for 3D printing include building manufacturing prototypes for various industries, allowing engineers to inexpensively test out new designs and produce tooling that can aid in the manufacturing process. Today, prototyping represents the majority of the activity in 3D printing, but there has also been considerable progress in medical applications, including everything from 3D models of anatomy for training surgeons to 3D-printed medical implants.



There is, however, great potential beyond the hype that suggests that anything can be 3D printed. It appears that the integration of 3D printing and printed electronics is finally resulting in viable products, such as miniature antennas, improved test fixtures, and modular components that can be integrated into electronic products. SmarTech, which has produced market research reports on the 3D-printing industry for several years, is recognizing this trend with its first report on 3D printing in the electronics industry, published in August.

Printing Methods
Additive manufacturing relies on one of several methods, the choice of which depends on the material to be printed, performance requirements, and the customer’s budget for equipment. Here are the technologies that are most applicable to 3D printing for electronics applications.

The machines that most people associate with 3D printing use fused deposition modeling (FDM), in which a filament of material is melted and deposited onto a surface in layers. The printers are relatively inexpensive, ranging from tabletop machines for hobbyists to more substantial equipment for industrial use. FDM printers primarily print various plastics, although the filaments can be infused with metals or other materials.


Terms:

Did you enjoy this article? Click here to subscribe to the magazine.